Network-Centric Warfare (NCW) is characterized by geographically dispersed forces maintaining a high level of situational awareness, thus allowing increasing tempo of operations, increased responsiveness, lower risk, and increased combat effectiveness. One of the most important aspects of situational awareness is the ability to effectively communicate between entities and military organizations on the battlefield - real or simulated.
In a synthetic environment this communication capability is often simulated at a very low fidelity - if at all. Communications are often modeled as always being perfect, and even those simulations that do introduce imperfections rarely model factors such as time delays or network constraints. As a result, communications effects are not well considered, often causing the timing of actions resulting from near perfect communications to be unrepresentative of reality, contributing to negative analysis and training.
This paper examines and analyzes the impact of using a high fidelity communication model versus the limitations of simplified communication models in existing synthetic environments. The authors have created an interface control document (ICD) to allow integration of commercial communications effects servers into an HLA / DIS virtual environment. Utilizing this framework with commercially available communications and entity simulation software, the authors examine the impact of improved communications modeling fidelity on successful analysis and training results.